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A description of the quantum superalgebraUq[sl(n + 1|m)]
via creation and annihilation generators

T D Palev† and N I Stoilova†
Abdus Salam International Centre for Theoretical Physics, 34100 Trieste, Italy

Received 13 October 1998

Abstract. A description of the quantum superalgebraUq [sl(n + 1|m)] and in particular of the
special linear superalgebrasl(n + 1|m) via creation and annihilation generators (CAGs) is given.
It provides an alternative to the canonical description ofUq [sl(n + 1|m)] in terms of Chevalley
generators. A conjecture that the Fock representations of the CAGs provide microscopic realizations
of exclusion statistics is formulated.

1. Introduction

The description of the quantized simple (universal enveloping) Lie algebras [1, 2] and the
basic Lie superalgebras [3–7] is usually carried out in terms of their Chevalley generators
(ei, fi, hi , i = 1, . . . , n, for an algebra of rankn). Recently it has been pointed out that
the quantum (super)algebrasUq [osp(1|2n)] [8–10], Uq [so(2n + 1)] [11], more generally
Uq [osp(2r + 1|2m)], r +m = n [12], and alsoUq [sl(n+ 1)] [13] can be defined via alternative
sets of generatorsa±i , Hi, i = 1, . . . , n, referred to as (deformed) creation and annihilation
generators (CAGs) or creation and annihilation operators.

The concept of creation and annihilation generators of a simple Lie (super)algebra was
introduced in [14]. LetA be such an algebra with a supercommutator [[, ]]. The root vectors
a
ξ

1, . . . , a
ξ
n of A are said to be creation (ξ = +) and annihilation (ξ = −) generators ofA, if

A = lin.env.{aξi , [[aηj , aεk ]] |i, j, k = 1, . . . , n; ξ, η, ε = ±} (1)

so thata+
1 , . . . , a

+
n (resp.a−1 , . . . , a

−
n ) are negative (resp. positive) root vectors ofA.

The justification for such terminology stems from the observation that the creation and the
annihilation generators of the orthosymplectic Lie superalgebra (LS)osp(2r + 1|2m) have a
direct physical significance:a±1 , . . . , a

±
m (resp.a±m+1, . . . , a

±
n ) are para-Bose (resp. para-Fermi)

operators [15], namely operators which generalize the statistics of the tensor (resp. spinor) fields
in quantum field theory [16]. The LSosp(2r + 1|2m) is an algebra from the class B in the
classification of Kac [17]. Therefore the paraquantizations (and hence the canonical Bose and
Fermi quantization) could be called B-quantizations (or, more precisely, representations of a
B-quantization).

A conjecture, stated in [18], assumes that to each class A, B, C and D of basic LSs [17]
there corresponds a quantum statistics, so that its CAGs can be interpreted as creation and
annihilation operators of real particles in the corresponding Fock space(s). This conjecture
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holds for the classes A, B, C and D of simple Lie algebras [19]. It was studied in more detail
for the Lie algebrassl(n + 1) (A-statistics) [20] and for the LSssl(1|m) (A-superstatistics)
[14, 21]. As an illustration we mention that the Wigner quantum systems (WQSs), introduced
in [22], are based on the A-superstatistics. These systems, which attracted some attention
from different points of view [23–25], possess quite unconventional physical properties. For
example, the(n + 1)-particle WQS, based on the LSsl(1|3n) [26], exhibits a quark-like
structure: the composite system occupies a small volume around the centre of mass and within
it the geometry is noncommutative. The underlying statistics is a Haldane exclusion statistics
[27], a subject of considerable interest in condensed matter physics.

We are not going to discuss further the properties of the superstatistics (for more details
on this subject see [28, 26] and the references therein). We mention this point here only in
order to indicate that the alternative description ofsl(n + 1|m) andUq [sl(n + 1|m)] will be
carried out in terms of (deformed) creation and annihilation generators, which, contrary to the
Chevalley generators, could also be of direct physical relevance.

Throughout the paper we use the notation: LS, LS’s—Lie superalgebra, Lie superalgebras;
CAGs—creation and annihilation generators; lin.env.—linear envelope;Z—all integers;Z+—
all non-negative integers;Z2 = {0̄, 1̄}—the ring of all integers modulo 2;C—all complex
numbers;

[p; q] = {p, p + 1, p + 2, . . . , q − 1, q} for p 6 q ∈ Z (2)

θi =
{

0̄ if i = 0, 1, 2, . . . , n
1̄ if i = n + 1, n + 2, . . . , n +m

θij = θi + θj (3)

[a, b] = ab − ba {a, b} = ab + ba [[a, b]] = ab − (−1)deg(a)deg(b)ba (4)

[a, b]x = ab − xba {a, b}x = ab + xba [[a, b]] x = ab − (−1)deg(a)deg(b)xba. (5)

2. The Lie superalgebrasl(n + 1|m)

Here we give an alternative definition of the special linear Lie superalgebrasl(n + 1|m) in
terms of creation and annihilation generatorsa±1 , a

±
2 , . . . , a

±
n+m. We write down the relations

between the CAGs and the Chevalley generators.
First we recall that the universal enveloping algebraU [gl(n+1|m)] of the general linear LS

gl(n+1|m) is aZ2-graded associative unital superalgebra generated by(n+m+1)2 Z2-graded
indeterminates{eij |i, j ∈ [0; n +m]}, deg(eij ) = θij , subject to the relations

[[eij , ekl ]] = δjkeil − (−1)θij θkl δilekj i, j, k, l ∈ [0; n +m]. (6)

The LSgl(n + 1|m) is a subalgebra ofU [gl(n + 1|m)], considered as a Lie superalgebra, with
generators{eij |i, j ∈ [0; n +m]} and supercommutation relations (6). The LSsl(n + 1|m) is
a subalgebra ofgl(n + 1|m):
sl(n + 1|m) = lin.env.{eij , (−1)θk ekk − (−1)θl ell|i 6= j ; i, j, k, l ∈ [0; n +m]}. (7)

The generatorse00, e11, . . . , en+m,n+m constitute a basis in the Cartan subalgebra ofgl(n+1|m).
Denoted byε0, ε1, . . . , εn+m the dual basis,εi(ejj ) = δij . The root vectors of bothgl(n+ 1|m)
andsl(n + 1|m) areeij , i 6= j, i, j ∈ [0; n + m]. The root corresponding toeij is εi − εj .
With respect to the natural order of the basis in the Cartan subalgebraeij is a positive (resp. a
negative) root vector ifi < j (resp.i > j ).

The above description ofsl(n + 1|m) is simple, but it is not appropriate for quantum
deformations. A more ‘economic’ definition is given in terms of the Chevalley generators

ĥi = ei−1,i−1− (−1)θi−1,i eii êi = ei−1,i f̂i = ei,i−1 i ∈ [1; n +m] (8)
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and the(n +m)× (n +m) Cartan matrix{αij } with entries

αij = (1 + (−1)θi−1,i )δij − (−1)θi−1,i δi,j−1− δi−1,j i, j ∈ [1; n +m]. (9)

We are working with a nonsymmetric Cartan matrix [17]. For instance the Cartan matrix
(9), corresponding ton + 1= 3, m = 5 is 7× 7 dimensional matrix:

(αij ) =



2 −1 0 0 0 0 0
−1 2 −1 0 0 0 0
0 −1 0 1 0 0 0
0 0 −1 2 −1 0 0
0 0 0 −1 2 −1 0
0 0 0 0 −1 2 −1
0 0 0 0 0 −1 2


. (10)

U [sl(n + 1|m)] is an associative unital algebra of the Chevalley generators, subject to the
Cartan–Kac relations

[ĥi , ĥj ] = 0 [ĥi , êj ] = αij êj [ĥi , f̂j ] = −αij f̂j [[ êi , f̂j ]] = δij ĥi (11)

and the Serre relations

[êi , êj ] = 0 [f̂i , f̂j ] = 0 if |i − j | 6= 1 (12a)

ê2
n+1 = 0 f̂ 2

n+1 = 0 (12b)

[êi , [êi , êi+1]] = 0 [f̂i , [f̂i , f̂i+1]] = 0 i 6= n +m (12c)

[êi+1, [êi+1, êi ]] = 0 [f̂i+1, [f̂i+1, f̂i ]] = 0 i 6= n +m (12d)

{[ên+1, ên], [ên+1, ên+2]} = 0 {[f̂n+1, f̂n], [f̂n+1, f̂n+2]} = 0. (12e)

The so-called additional Serre relations (12e) [29–31] can also be written in the form

{ên+1, [[ ên, ên+1], ên+2]} = 0 {f̂n+1, [[ f̂n, f̂n+1], f̂n+2]} = 0. (12f)

The grading onU [sl(n + 1|m)] is induced from the requirement that the only odd generators
areên+1 andf̂n+1, namely

deg(ĥi) = 0̂ deg(êi) = deg(f̂i) = θi−1,i . (13)

The LSsl(n + 1|m) is a subalgebra ofU [sl(n + 1|m)], generated by the Chevalley generators
in a sense of a Lie superalgebra. It is a linear span of the Chevalley generators (8) and all root
vectors

eij = [[[ . . . [[ êi+1, êi+2], êi+3], . . .], êj−1], êj ]

eji = [f̂j , [f̂j−1, [. . . , [f̂i+2, f̂i+1] . . . , ]]] i + 1< j i, j ∈ [0; n +m].
(14)

Consider the following root vectors fromsl(n + 1|m):
â+
i = ei0 â−i = e0i i ∈ [1; n +m] (15)

or, equivalently from (14)

â−1 = ê1 â−i = [[[ . . . [[ ê1, ê2], ê3], . . .], êi−1], êi ] = [â−i−1, êi ] i ∈ [2; n +m] (16a)

â+
1 = f̂1 â+

i = [f̂i , [f̂i−1, [. . . , [f̂3, [f̂2, f̂1]] . . .]]] = [f̂i , â
+
i−1] i ∈ [2; n +m]. (16b)

The root ofa−i (resp. ofa+
i ) isε0−εi (resp.εi−ε0). Therefore, (with respect to the natural order

of the basisε0, ε1, . . . , εn+m) a−1 , . . . , a
−
n+m are positive root vectors, whereasa+

1 , . . . , a
+
n+m are

negative root vectors. Moreover, equation (1) withA = sl(n + 1|m) holds. Hence, the
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generators (15) are creation and annihilation generators ofsl(n + 1|m). These generators
satisfy the following triple relations:

[[ âξi , â
ξ

j ]] = 0 ξ = ± i, j = 1, 2, . . . , n +m (17a)

[[[[ â+
i , â
−
j ]] , â+

k ]] = δjkâ+
i + (−1)θi δij â

+
k i, j, k = 1, 2, . . . , n +m (17b)

[[[[ â+
i , â
−
j ]] , â−k ]] = −(−1)θij θk δikâ

−
j − (−1)θi δij â

−
k i, j, k ∈ [1; n +m]. (17c)

The CAGs (15) together with (17) define completelysl(n + 1|m). The relations (17) are,
however, (similar as equations (6)) not convenient for quantization. It turns out, and this is a
new result, that one can take only a part of the relations (17), so that they still define completely
sl(n + 1|m) and, as we shall see, are appropriate for Hopf algebra deformations.

Proposition 1. U [sl(n + 1|m)] is an associative unital superalgebra with generatorsâ±i ,
i ∈ [1; n +m] and relations:

[[ âξ1, â
ξ

2]] = 0 [[âξ1, â
ξ

1]] = 0 ξ = ± (18a)

[[[[ â+
i , â
−
j ]] , â+

k ]] = δjkâ+
i + (−1)θi δij â

+
k |i − j | 6 1 i, j, k ∈ [1; n +m] (18b)

[[[[ â+
i , â
−
j ]] , â−k ]] = −(−1)θij θk δikâ

−
j − (−1)θi δij â

−
k |i − j | 6 1 i, j, k ∈ [1; n +m].

(18c)

TheZ2-grading inU [sl(n + 1|m)] is induced from

deg(â±i ) = θi . (19)

The proof follows from the expressions of the Chevalley generators (8) via the CAGs:

ĥ1 = [[ â−1 , â
+
1]] ĥi = (−1)θi−1([[ â−i , â

+
i ]] − [[ â−i−1, â

+
i−1]]) i ∈ [2; n +m] (20a)

ê1 = â−1 f̂1 = â+
1 êi = [[ â+

i−1, â
−
i ]] f̂i = [[ â+

i , â
−
i−1]] i ∈ [2; n +m]. (20b)

We skip the proof of equations (20), since we give a detailed proof in the quantum case (see
the theorem). Only from (18) one also derives the larger set of relation (17).

3. Description ofUq[sl(n + 1|m)] via deformed CAGs

In this section we define the quantum superalgebraUq [sl(n + 1|m)] in terms of deformed
creation and annihilation generatorsa±i , Hi , i = 1, 2, . . . , n + m. The CAGs are elements
from the so-called Cartan–Weyl basis ofUq [sl(n + 1|m)]. A general procedure to construct
such a basis was given in [7] (see also [29]). We follow this procedure and identify the deformed
a±1 , . . . , a

±
n+m generators with those elements of the Cartan–Weyl basis, which reduce to the

nondeformed CAGs (16) in the limitq → 1.
First we introduceUq [sl(n+1|m)] by means of its classical definition in terms of the Cartan

matrix (9) and the Chevalley generators. LetC[[h]] be the complex algebra of formal power
series in the indeterminateh, q = eh ∈ C[[h]]. Uq [sl(n + 1|m)] is a Hopf algebra, which
is a topologically freeC[[h]] module (complete in theh–adic topology), with (Chevalley)
generators{hi, ei, fi}i∈[1;n+m] subject to the Cartan–Kac relations (q̄ = q−1)

[hi, hj ] = 0 (21a)

[hi, ej ] = αij ej [hi, fj ] = −αijfj (21b)

[[ei, fj ]] = δij ki − k̄i
q − q̄ ki = qhi k−1

i ≡ k̄i = q−hi (21c)
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thee-Serre relations (see (5))

[ei, ej ] = 0 if |i − j | 6= 1 e2
n+1 = 0 (22a)

[ei, [ei, ei±1] q̄ ]q = [ei, [ei, ei±1]q ] q̄ = 0 i 6= n + 1 (22b)

{en+1, [[en, en+1]q, en+2] q̄} = {en+1, [[en, en+1] q̄ , en+2]q} = 0 (22c)

and thef -Serre relations, obtained from thee-Serre relations by replacing everywhereei with
fi :

[fi, fj ] = 0 if |i − j | 6= 1 f 2
n+1 = 0 (22d)

[fi, [fi, fi±1] q̄ ]q = [fi, [fi, fi±1]q ] q̄ = 0 i 6= n + 1 (22e)

{fn+1, [[fn, fn+1]q, fn+2] q̄} = {fn+1, [[fn, fn+1] q̄ , fn+2]q} = 0. (22f)

From (21b) one derives the following useful relations:

kiej = qαij ej ki kifj = q−αij fj ki k̄iej = q−αij ej k̄i k̄ifj = qαij fj k̄i . (23)

We do not write the other Hopf algebra maps(1, ε, S) (see [7, 29]), since we will not use
them. They are certainly also a part of the definition.

Remark. We considerh as an indeterminate. All relations remain also true, if one replaces
h with a number, so thatq is not a root of 1. The latter corresponds to a transition from
Uq [sl(n + 1|m) to the factor algebraUq [sl(n + 1|m)]/h = number.

Following [7, 29], we introduce a normal order in the system of the positive roots
1+ = {εi − εj |i < j ∈ [0; n +m]} as follows:

εi − εj < εk − εl if j < l or if j = l and i < k.

Taking into account equations (16), we define the deformed CAGs to be Cartan–Weyl basis
vectors, which are in agreement with the above normal order:

a−1 = e1 a−i = [[[ . . . [[e1, e2] q̄1, e3] q̄2, . . .] q̄i−3, ei−1] q̄i−2, ei ] q̄i−1 = [a−i−1, ei ] q̄i−1 (24a)

a+
1 = f1 a+

i = [fi, [fi−1, [. . . , [f3, [f2, f1]q1]q2 . . .]qi−3]qi−2]qi−1 = [fi, a
+
i−1]qi−1 (24b)

H1 = h1 Hi = h1 + (−1)θ1h2 + (−1)θ2h3 + · · · + (−1)θi−1hi (24c)

where

qi = q1−2θi =
{
q if i 6 n
q̄ if i > n.

(25)

Note that equations (21)–(23) are invariant with respect to the antilinear anti-involution
( )∗, defined as

(h)∗ = −h (hi)
∗ = hi (ei)

∗ = fi (fi)
∗ = ei (ab)∗ = (b)∗(a)∗. (26)

Therefore

(q)∗ = q̄ (ki)
∗ = k̄i (a±i )

∗ = a∓i (Hi)
∗ = Hi. (27)

The next proposition will be used in several intermediate computations.

Proposition 2. The relations (i 6= 1)

[[ei, a
−
j ]]

q
δi−1,j−δij
j

= −qi−1δi−1,j a
−
i (28a)

[[fi, a
+
j ]]

q
δi−1,j−δij
j

= δi−1,j a
+
i (28b)

[[ei, a
+
j ]] = δij a+

i−1k
−(−1)θi−1

i (28c)

[[fi, a
−
j ]] = −(−1)θi−1,i δij k

(−1)θi−1

i a−i−1 (28d)

follow from (21)–(23) and the definition of the CAGs (24).



1058 T D Palev and N I Stoilova

Proof. The proof is based on a case by case considerations.

(A) Consider first (28a).

(i) For j 6 i− 1 (28a) is an immediate consequence of (22a) or of the definition(24a).
(ii) j = i.

(ii.1) For i = 2 (28a) follows directly from (22).
(ii.2) i > 2. Using the identity

If [[ a, b]] = 0 then [[[[a, c]] q, b]]p = [[a, [[c, b]]p]] q p, q ∈ C[[h]] (29)
and the circumstance that [ei, a

−
i−2] = 0, one obtains from (24a) a−i =

[[a−i−2, ei−1] q̄i−2, ei ] q̄i−1 = [a−i−2, [ei−1, ei ] q̄i−1] q̄i−2.
(ii.2a) If i = n + 1, [[en+1, a

−
n+1]] q̄n+1 = {en+1, [a

−
n−1, [en, en+1] q̄ ] q̄}q .

Take into account that [[en+1, a
−
n−1]] = 0 and apply the identity

If [[ a, b]] = 0 [[a, [[b, c]] q ]]p = (−1)αβ [[b, [[a, c]]p]] q
α = deg(a) β = deg(b). (30)

Then [[en+1, a
−
n+1]] q̄n+1 = [a−n−1, z] q̄ = 0, sincez = {en+1, [en, en+1] q̄}q = 0

(from e2
n+1 = 0).

(ii.2b) If i 6= n + 1, then from (30) [[ei, a
−
i ]] q̄i = [ei, [a

−
i−2, [ei−1, ei ] q̄i−1] q̄i−2] q̄i =

−q̄i−1[a−i−2, y] q̄i−2 = 0, sincey = [ei, [ei, ei−1]qi−1] q̄i = 0, according to (25)
and (22b).

(iii) j = i + 1.
We consider only the more difficult case, namelyi > 2.
Set (see (24a)) a−i+1 = [[[ a−i−2, ei−1] q̄i−2, ei ] q̄i−1, ei+1] q̄i . Use that [a−i−2, ei ] =
[a−i−2, ei+1] = 0 and apply twice (29):a−i+1 = [a−i−2, [[ei−1, ei ] q̄i−1, ei+1] q̄i ] q̄i−2.

(iii.1) If i = n + 1, [[ei, a
−
i+1]] = {en+1, a

−
n+2} = {en+1, [a

−
n−1, [[en, en+1] q̄n , en+2] q̄n+1] q̄n−1}

(take into account that [en+1, a
−
n−1] = 0 and (30))= [a−n−1, {en+1, [[en, en+1] q̄n ,

en+2] q̄n+1}] q̄n−1 = 0 according to (22c) and (25).
(iii.2) If i 6= n + 1 [[ei, a

−
i+1]] = [ei , [a−i−2, [[ei−1, ei ] q̄i−1, ei+1] q̄i ] q̄i−2] ([ei, a

−
i−2] = 0, use

(30))= [a−i−2, [ei , [[ei−1, ei ] q̄i−1, ei+1] q̄i ]] q̄i−2 = [a−i−2, [ei , [[ei−1, ei ] q̄i , ei+1] q̄i ]] q̄i−2.
Apply the identity: If deg(a) = 0 and [[b, c]] = 0,
(x + x̄)[a, [[[ b, a]x, c]] x ] = [[b, [a, [a, c]x ] x̄ ]] x2 − [[[ a, [a, b]x ] x̄ , c]] x2. (31)
Then (22b) yields [[ei, a

−
i+1]] = (q̄i + qi)−1[a−i−2, ([ei−1, [ei, [ei, ei+1] q̄i ]qi ]q−2

i
−

[[ei, [ei, ei−1] q̄i ]qi , ei+1]q−2
i
)] q̄i−2 = 0.

(iv) The casej > i + 1 is evident. The unification of (i)–(iv) yields (28a).

(B) Applying the anti-involution (26) on both sides of (28a) one obtains (28b).
(C) We pass to prove (28c).

(i) For i > j (28c) is an immediate consequence of (24b) and (21c).
(ii) i = j . [[ei, a+

i ]] = [[ei, [fi, a+
i−1]qi−1]] (from (i) [[ ei, a+

i−1]] = 0, apply (29))

= [[[[ ei, fi ]] , a+
i−1]] qi−1 = [ ki−k̄i

q−q̄ , a
+
i−1]qi−1 = a+

i−1k
−(−1)θi−1

i .

In the last step we used the relationskia+
i−1 = qa+

i−1ki andk̄ia+
i−1 = q̄a+

i−1k̄i , which
follow from (24b) and (23).

(iii) j = i + 1. [[ei, a+
i+1]] = [[ei, [fi+1, [fi, a+

i−1]qi−1]qi ]] (take into account that
[ei, fi+1] = 0 and apply (30))= [[fi+1, [[ei, [fi, a+

i−1]qi−1]]]] qi (now [ei, a+
i−1] =

0, use (29))= [[fi+1, [[[[ ei, fi ]], a+
i−1]] qi−1]] qi = [[fi+1, [[ ki−k̄i

q−q̄ , a+
i−1]] qi−1]] qi =

[fi+1, a
+
i−1k

−(−1)θi−1 ]qi . Using the identity [a, bc]x = [a, b]c + b[a, c]x one has

[[ei, a+
i+1]] = [fi+1, a

+
i−1]k−(−1)θi−1

i + a+
i−1[fi+1, k

−(−1)θi−1

i ]qi = 0, according to (28b),
(23) and (25).

(iv) (28c) is evident forj > i + 1. The unification of (i)–(iv) yields (28c).
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(D) Applying the anti-involution (26) on both sides of (28c) one obtains (28d).

This completes the proof. �

Proposition 3. The deformed CAGs (24) generateUq [sl(n + 1|m)].

Proof. Let

Li = qHi L̄i ≡ L−1
i = q−Hi . (32)

The proof is a consequence of the relations

[[a−i , a
+
i ]] = Li − L̄i

q − q̄ (33a)

[[a−i , a
+
i+1]] = −(−1)θiLifi+1 (33b)

[[a−i+1, a
+
i ]] = −(−1)θi ei+1L̄i . (33c)

We prove these equations by induction oni. For i = 1, (33a) holds. Let(33a) be true. Then
from (28d), (30) and(33a) one has

[[a−i , a
+
i+1]] = [[a−i , [fi+1, a

+
i ]qi ]] = [[fi+1, [[a

−
i , a

+
i ]]]] qi =

1

q − q̄ [fi+1, Li − L̄i ]qi

= 1

q − q̄ [fi+1, k1k
(−1)θ1
2 k

(−1)θ2
3 . . . k

(−1)θi−1

i − k̄1k
−(−1)θ1
2 k

−(−1)θ2
3 . . . k

−(−1)θi−1

i ]qi .

Using (25) and repeatedly(23), one ends with [[a−i , a
+
i+1]] = −(−1)θi k1k

(−1)θ1
2 k

(−1)θ2
3 . . .

k
(−1)θi−1

i fi+1, namely with(33b). Similarly, one proves(33c). Therefore, if(33a) holds,
then also equations(33b) and (33c) are fulfilled. Assuming this, consider [[a−i+1, a

+
i+1]] =

[[[ a−i , ei+1] q̄i , a
+
i+1]]. Then the identity

[[[[ a, b]] x, c]] = (−1)βγ [[[[ a, c]] , b]] x + [[a, [[b, c]]]] x β = deg(b) γ = deg(c) (34)

yields

[[a−i+1, a
+
i+1]] = (−1)θi,i+1[[[[ a−i , a

+
i+1]] , ei+1]] q̄i + [[a−i , [[ei+1, a

+
i+1]]]] q̄i

= − (−1)θi+1[[fi+1, ei+1]]k1k
(−1)θ1
2 k

(−1)θ2
3 . . . k

(−1)θi−1

i + [[a−i , a
+
i ]]k−(−1)θi

i+1

= k1k
(−1)θ1
2 k

(−1)θ2
3 . . . k

(−1)θi−1

i k
(−1)θi
i+1 − k̄1k

−(−1)θ1
2 k

−(−1)θ2
3 . . . k

−(−1)θi−1

i k
−(−1)θi
i+1

q − q̄
= Li+1− L̄i+1

q − q̄ .

Thus, equations (33) hold for anyi. From (24c) and (33) we have

e1 = a−1 ei+1 = −(−1)θi [[a−i+1, a
+
i ]]qHi i ∈ [1; n +m− 1] (35a)

f1 = a+
1 fi+1 = −(−1)θi q̄Hi [a−i , a

+
i+1]] i ∈ [1; n +m− 1] (35b)

h1 = H1 hi = (−1)θi−1(Hi −Hi−1) i ∈ [2; n +m] (35c)

which completes the proof. �

We proceed to state our main result.
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Theorem.Uq [sl(n+ 1|m)] is an unital associative algebra, which is topologically freeC[[h]]
module, with generators{Hi, a±i }i∈[1;n+m] and relations

[Hi,Hj ] = 0 (36a)

[Hi, a
±
j ] = ∓(1 + (−1)θi δij )a

±
j (36b)

[[a−i , a
+
i ]] = Li − L̄i

q − q̄ (36c)

[[[[ aηi , a
−η
i+ξ ]] , a

η

k ]]
qξ(1+(−1)θi δik )

= δk,i+ξL−ξηk a
η

i ξ, η = ± or ± 1 (36d)

[[aξ1, a
ξ

2]] q = 0 [[aξ1, a
ξ

1]] = 0 ξ = ±. (36e)

Proof. As a first step one has to show that equations (36) hold. Most of the results for this part
of the proof are already obtained. Equation (36a) is evident. Equation (36b) follows from the
relation

∑i
p=1

∑j

q=1(−1)θp−1αpq = 1 + (−1)θi δij , the definitions ofa±i andHi (see (24)) and
the relations (21b). From (36b) one also derives

Lia
±
j = q∓(1+(−1)θi δij )a±j Li. (37)

Equation (36c) is the same as (33a). The derivation of all triple relations (36d) is relatively
long, but simple. It is based on a case by case consideration. To this end one replacesei and
fi in (28) with the right-hand sides of (35a), (35b). The nontrivial part is to put all cases in the
compact form (36d). If n 6= 0, [[aξ1, a

ξ

1]] = [aξ1, a
ξ

1] = 0. The first relations in(36e) reduce
to the triple Serre relations (22b), (22e). If n = 0, equations (36e) hold becausee2

1 = 0 and
f 2

1 = 0.
It remains to prove as a second step that any other relation inUq [sl(n+1|m)] follows from

equations (36). To this end it suffices to show that all Cartan–Kac relations (21) and the Serre
relations (22) follow from (36).

(A) The Cartan–Kac relations(21a) follow in an evident way from (35c) and (36a).
(B) Equations(21b) are easily derived from (35) and (36b).
(C) The proof of(21c) is not trivial. It is based on the identity (α = deg(a), β = deg(b)):

If x = zs, y = zr, t = zsr; x, y, z, r, s, t ∈ C[[h]], then

[[a, [[b, c]] x ]] y = [[[[ a, b]] z, c]] t + z(−1)αβ [[b, [[a, c]] r ]] s . (38)

(i) The casei, j ∈ [2; n +m]. From (35) and (37) one derives

[[ei, fj ]] = (−1)θi−1,j−1q(−1)θi−1−(−1)
θj−1 δij +(−1)

θj−1 δi,j−1
Li−1L̄j−1

×[[[[ a−i , a
+
i−1]] , [[a−j−1, a

+
j ]]]]

q
(−1)θi−1 δi−1,j−(−1)

θj−1 δi,j−1
(39)

(i.1) i = j . [[ei, fi ]] = [[[[ a−i , a
+
i−1]] , [[a−i−1, a

+
i ]]]] (apply (38) with a = [[a+

i−1, a
−
i ]],

b = a+
i , c = a−i−1 andx = y = 1, z = q, r = s = t = q̄ and use (36) and (37))

= (−1)θi−1

q−q̄ (k
(−1)θi−1

i − k−(−1)θi−1

i ) = ki−k̄i
q−q̄ .

(i.2) Let |i − j | > 1. [[ei, fj ]] = (−1)θij q(−1)θi−1
Li−1L̄j−1[[[[ a+

i−1, a
−
i ]] , [[a+

j , a
−
j−1]]]]

(use (38) witha = [[a+
i−1, a

−
i ]], b = a+

j , c = a−j−1, x = y = 1, t = s = r = z̄ = q̄
and (36d)) = 0.

(i.3) The casesj = i − 1 andj = i + 1 are proved in a similar way as (i.2).
(ii) The verification of (21c) for i = j = 1; i = 1, j > 1 andi > 1, j = 1 is simple.

(D) We pass to prove (22a), namely that [[ei, ej ]] = 0 if |i − j | 6= 1.

(i) The cases withi = 1 andj ∈ [3; n +m] follow directly from (37) and (36d).



A description ofUq [sl(n + 1|m)] via CAGs 1061

(ii) i 6= j ∈ [2; n + m]. From (35a) and (37) [ei, ej ] = (−1)θij [[[ a+
i−1, a

−
i ]] , [[a+

j−1,
a−j ]]]Li−1Lj−1 (use (38) witha = [[a+

i−1, a
−
i ]], b = a+

j−1, c = a−j , x = y = 1,
t = r = s = z̄ = q̄ and (36d)) = 0.

(iii) If i = j 6= n + 1, [[ei, ei ]] = [ei, ei ] = 0.
(iv) Considere2

n+1 = 1
2{en+1, en+1} ≡ 1

2[[en+1, en+1]].
(iv.1) The case withn + 1= 1 is evident:{e1, e1} = {a−1 , a−1 } = 0, see(36e).
(iv.2) n + 1 6= 1. Use (35a): e2

n+1 ∼ {en+1, en+1}q2 = q̄[[[[ a−n+1, a
+
n ]] , [[a−n+1, a

+
n ]]]] q2L2

n

(from (38) with a = [[a−n+1, a
+
n ]], b = a−n+1, c = a+

n , x = s = z = 1,
y = r = t = q2) = 0. Hence the Serre relations (22a) follow from (36).

(E) We prove the triple Serre relation [ei, [ei, ei+1] q̄ ]q = [ei, [ei, ei+1]q ] q̄ = 0, i 6= n + 1.

(i) The casei = 1 is evident: [e1, [e1, e2] q̄ ]q = [a−1 , a
−
2 ]q = 0.

(ii) i ∈ [2; n]. From (35a) and (37) [ei, ei+1] q̄ = [[a−i , a
+
i−1]Li−1, [a

−
i+1, a

+
i ]Li ] q̄ =

[[a−i , a
+
i−1], [a−i+1, a

+
i ]]LiLi−1 (apply (38) with a = [a−i , a

+
i−1], b = a−i+1,

c = a+
i , x = y = 1, z = q̄, r = s = t = q) = [[[ a−i , a+

i−1],
a−i+1] q̄ , a

+
i ]qLiLi−1 + q̄[a−i+1, [[a−i , a

+
i−1], a+

i ]q ]qLiLi−1 (use (36d) and (37))=
−q̄[a−i+1, L̄ia

+
i−1]qLiLi−1 = −[a−i+1, a

+
i−1]Li−1. Therefore [ei, [ei, ei+1] q̄ ]q =

[[a−i , a
+
i−1]Li−1, [a

−
i+1, a

+
i−1]Li−1]q = q̄[[a−i , a

+
i−1], [a−i+1, a

+
i−1]] qL2

i−1 (from (38)
with a = [a−i , a

+
i−1], b = a−i+1, c = a+

i−1, x = 1, y = s = q, z = q̄, r =
t = q2) = q̄([[[ a−i , a+

i−1], a−i+1] q̄ , a
+
i−1]q2]q + q̄[a−i+1, [[a

−
i , a

+
i−1], a+

i−1]q2]q)L2
i−1 = 0,

according to (36d).
(iii) i ∈ [n + 2; n +m]. The proof is similar to (ii).

The other triplee-Serre relation [ei, [ei, ei−1] q̄ ]q = [ei, [ei, ei−1]q ] q̄ = 0 is proved in
a similar way.

(F) Contrary to the proof of proposition 2, equations (28) are an easy consequence of (38).
Note also that from equations (28) one derives equations (24a), (24b). We use them in
order to prove the additional Serre relation(22c).
Using (24a), write a−n+2 = [[[ a−n−1, en] q̄ , en+1] q̄ , en+1]q . From (28a) {en+1, a

−
n+2} = 0.

Therefore 0= {en+1, a
−
n+2} = {en+1, [[[ a

−
n−1, en] q̄ , en+1] q̄ , en+1]q}. Since [en+1, a

−
n−1] =

[en+2, a
−
n−1] = 0 (see (28a)), applying twice (29) and (30), one obtains{en+1, a

−
n+2}

= [a−n−1, y] q̄ = 0, where

y = {en+1, [[en, en+1] q̄ , en+2]q}. (40)

Therefore [y, a−n−1]q = 0. From (24b), (21c) and (40) it follows also that [y, a+
n−1] = 0.

Applying (29) we have 0= [[y, a−n−1]q, a+
n−1] = [y, [a−n−1, a

+
n−1]] q (use (36c), (24c),

(21b)) = (q − q̄)−1[y, Ln−1 − L̄n−1]q = qyL̄n−1. Hence,y = 0, i.e. the additional
e-Serre relation (22c) holds.

(G) In a similar way one derives thef -Serre relations (22d)–(22f ). Another way to prove
them is to apply the∗-operation (26) on both sides of thee-Serre relations.

This completes the proof of the theorem. �

4. Discussions and further outlook

In this paper we enlarge the list of the quantum superalgebras, which admit a description via
deformed creation and annihilation generators [8–13], adding to it all quantum superalgebras
Uq [sl(n+1|m)]. The possibility for such a description is not unexpected. We have generalized
the results forUq [sl(n + 1)] [13] to the superalgebra case. This generalization is, however,
we wish to point out, neither evident nor straightforward. The ‘super’ structure is richer, with
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more relations (e2
n+1 = f 2

n+1 = 0, additional Serre relations (22c), (22f )) and, as a result, with
several features which do not appear in the Lie algebra cases (the simple root systems are not
related by transformations from the Weyl group, one and the same superalgebra admits several
Dynkin diagrams, etc). All these peculiarities, especially in the deformed case, which we have
mainly in mind here and below, make the computations nontrivial and technically much more
involved.

In the introduction we said a few words to justify the namecreation and annihilation
generators. Another reason for this name stems from the observation that, using the CAGs,
one can construct Fock spaces in a much similar way as in the parastatistics quantum field
theory (postulating the existence of a vacuum, which is annihilated by alla−i operators and
introducing an order of the statistics [16]; for more details on parastatistics see, for instance,
[32]). Then the Fock spaces are generated by the creation operators, acting on the vacuum.
Moreovera+

i , acting on a state with fixed number of ‘particles’ (elementary excitation) of
speciesi, increases them by one, whereasa−i diminishes them by one. The advantage of this
property for the physical applications and interpretation is evident. Consider, for instance, a
‘free’ Hamiltonian

H =
n+m∑
i=1

εiHi such that
n+m∑
i=1

(−1)θi εi = 0 (41)

which in the nondeformed case takes the usual form

H =
n+m∑
i=1

εi [[a
+
i , a
−
i ]] . (42)

Then

[H, a±i ] = ±εia±i (43)

i.e. a+
i (resp.a−i ) can be interpreted as an operator creating (resp. annihilating) a ‘particle’

of speciesi with energyεi . Our physical conjectureis that the Fock representations of
the deformed CAGs will lead to new solutions for the microscopicg-ons statistics in the
sense of Karabali and Nair [33], which is a particular realization of the exclusion statistics of
Haldane [27].

The Fock representations may, however, also be of interest from another, more
mathematical point of view. So far the finite-dimensional irreducible representations of the
LSs from the class A were explicitly constructed only forsl(n|1) [34]. Any such representation
can be deformed to a representation ofUq [sl(n|1)] [35]. The representation theory of
sl(n|m), n,m = 1, 2, . . . and hence of the corresponding deformed algebras is, however,
far from being complete, if bothn 6= 1 andm 6= 1. In [36] the so-called essentially typical
representations ofsl(n|m) were described. The results were also generalized to the quantum
case [37]. Ourmathematical conjectureis that the Fock representations are beyond the class
of the deformed essentially typical representation [36], thus yielding new representations of
Uq [sl(n + 1|m)].

In order to verify the above conjectures one would need to construct the Fock
representations explicitly, i.e. to introduce a basis and to write down the transformations of
the basis under the action of the generators. As a first step one has to determine the quantum
analogue of the triple relations (17). This is a nontrivial problem. It actually means that one has
to write down the supercommutation relations between all Cartan–Weyl generators, expressed
via the CAGs. The latter is a necessary condition for the application of the Poincare–Birghoff–
Witt theorem, when computing the action of the generators on the Fock basis vectors. We return
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to this problem elsewhere. Here we mention only one, but important additional relation: from
(17) one derives that the creation (resp. annihilation) generatorsq-supercommute,

[[aξi , a
ξ

j ]] q ′ = 0 q ′ = q or q̄ i, j ∈ [1; n +m] ξ = ±. (44)

This makes evident the basis (or at least one possible basis) in a given Fock space, since any
product of only creation generators can always be ordered. Note that similar property does
not hold for para-Bose (or para-Fermi) creation operators. This is the reason why (even in
the nondeformed case) the matrix elements of the para-operators still remains unknown for
an arbitrary order of the parastatistics: the Fock space basis cannot be represented as ordered
products of only para-Bose (or para-Fermi) creation operators acting on the vacuum (the linear
span of such vectors is not invariant under the action of the para-operators).

Finally let us mention that we do not have simple relations for the action of the other
Hopf algebra operations(1, ε, S) on the CAGs, although it is clear how to write them down,
using equations (16) and the circumstance that the comultiplication1 and the co-unityε
are morphisms, whereas the antipodeS is an antimorphism. In this respect the picture is
much the same as discussed in [13]. Luckily, the(1, ε, S)-operations are not necessary for
computing the transformations of the Fock modules (but they are certainly very important
when considering tensor products of representation spaces).
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